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Developed Models: 
Model 1 (sim1 and sim2): ​ ​ ​ ​ Model 2 (sim6 and sim7):  

 
Model 1:  
Each model processes DNA sequences of length 249, one-hot encoded at each position into 4 dimensions 
(one per DNA base). Model 1 starts with a convolutional layer detecting 5-bp patterns with 64 filters, 
followed by batch normalization and max pooling over pairs of positions. A second convolutional layer, 
also with a 5-bp kernel but 32 filters, extracts higher-level features, followed by another batch 
normalization. Global max pooling then reduces each of the 32 feature maps to its strongest activation, 
producing a fixed-length vector. This is passed to a dense layer with 64 units and ReLU activation, 
followed by layer normalization and dropout (rate 0.5). This sequence is repeated with 32 units in the 
dense layer to further compress the representation. The final output layer uses a single neuron with 
sigmoid activation for binary classification. Training was performed with the ADAM optimizer and 
binary cross entropy loss. 
Model 2:  
For Model 2, the network begins with a convolutional layer using 64 filters and a 15-bp kernel to capture 
longer-range patterns, followed by max pooling over windows of 5 positions and a dropout layer (rate 
0.3). A second convolutional layer with 128 filters and a 5-bp kernel extracts higher-level features, again 
followed by max pooling (size 5) and dropout (rate 0.3). The output is flattened and passed through a 
dense layer with 256 units and ReLU activation, followed by another dropout layer (rate 0.3). A second 
dense layer with 64 units and ReLU further compresses the representation. The final output layer uses a 
single neuron with sigmoid activation for binary classification. Training was performed with the ADAM 
optimizer and binary cross entropy loss. 
Methods: 
Our general model design process was to create a complex model, compare training and validation 
accuracy on each set, and then modify the model for each set according to those results.  
As a baseline, a random prediction model was designed. 0 or 1 was randomly generated and assigned to 
each sequence, then compared to the true class. 



Simple Model: We first built a very simple model, with only a flatten layer then three dense layers. This 
had around 50% accuracy for both the training and validation sets, supporting our theory that we should 
add convolutional filters to recognize patterns.  
First Complex Model: We then built a more complex model and trained and validated it on each set. We 
had two convolutional filters, two dense layers, and normalization and pooling throughout. The 
convolutional layers were designed to identify conserved sequence motifs, as enhancers often share 
evolutionarily preserved patterns, and we hoped this would improve accuracy. We applied layer 
normalization in the dense layers instead of batch normalization to stabilize training across individual 
feature vectors. Since the convolutional layers are followed by global max pooling, the fully connected 
layers operate on single feature vectors, making layer normalization more effective here. This model had 
high (>99%) accuracy on the training and validation sets for sim1 and sim2, but low (48-50%) accuracy 
on the training and validation sets for sim6 and sim7. We decided to keep this model for sim1 and sim2, 
but modify it for sim6 and sim7.  
Second Complex Model: For sim6 and sim7, we tested several models to improve accuracy. We first 
modified our original architecture by adding additional and more varied convolutional layers, and also 
explored a sequential dilated stack to capture motifs of different lengths. We chose not to implement GRU 
or LSTM architectures due to their long runtimes and high memory demands. Next, we developed a 
model based on the DeepSTARR framework, which had better accuracy. We used this framework moving 
forward. To balance unequal training and validation performance, we experimented with different dropout 
rates—lowering dropout to improve training accuracy, and increasing it when validation accuracy 
outperformed training. We found that a 30% dropout rate provided the best balance, achieving high 
accuracy without overfitting (shown below).  

Sim6 Dropout Optimization Sim7 Dropout Optimization 

Dropout Rate Training 
Accuracy 

Validation 
Accuracy 

Dropout Rate Training 
Accuracy 

Validation 
Accuracy 

50% 96.84% 97.11% 50% 96.77% 97.15% 

30% 98.46% 98.18% 30% 98.78% 98.37% 

20% 99.05% 98.04% 20% 99.34% 98.22% 

Example: Sim7 Dropout Rate 20% (Left) and Dropout Rate 30% (Right) 

 
The first graph shows validation accuracy lower than training, demonstrating that the model overfits the 
data. The second graph shows no overfitting, demonstrating that the optimal dropout rate was reached. 



Results: 
Our baseline model (random classification) had a 49.99% accuracy, as expected for binary classification. 
Final results for each model are below: 

Accuracy Sim1 (Model 1) Sim2 (Model 1) Sim6 (Model 2) Sim7 (Model 2) 

Training 99.75% 99.42% 98.65% 98.28% 

Validation 99.55% 99.39% 98.45% 98.27% 

Testing 99.50% 99.26% 98.38% 98.43% 

Loss Sim1 (Model 1) Sim2 (Model 1) Sim6 (Model 2) Sim7 (Model 2) 

Training 0.0126 0.0279 0.0365 0.0547 

Validation 0.0275 0.0313 0.0432 0.0649 

Testing 0.0279 0.0367 0.0585 0.0459 

 
ROC Curves: 
Model 1 (Sim1 AUC: 1.00, Sim2 AUC: 1.00) 

 
Model 2 (Sim6 AUC: 0.99, Sim7 AUC: 1.00): 

 
All of our AUCs were 0.99 or 1.00, demonstrating high accuracy for our binary classification 
models.  


